
Attraction basins in discretized maps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 3757

(http://iopscience.iop.org/0305-4470/30/11/009)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 3757–3769. Printed in the UK PII: S0305-4470(97)76325-X

Attraction basins in discretized maps

Ugo Bastolla and Giorgio Parisi
Department of Physics, University ‘La Sapienza’, Ple Aldo Moro 2, I-00185 Roma, Italy

Received 9 July 1996, in final form 16 January 1997

Abstract. In this note we consider maps which are defined on continuous space whose large
time behaviour displays a strange attractor. We are interested in the properties of the discrete
maps that are obtained from these continuous ones by discretizing the space. Such systems
behave as disordered dynamical systems. The strange attractor breaks down in many (sometimes
one) periodic attractors. We study here the statistical properties of such attractors. Generalizing
previous conjectures we propose that the distribution of the attraction basins’ sizes is the same
as in the random map problem. This result is shown to be in good agreement with numerical
experiments.

1. Introduction

It is well known that there are many maps defined on a continuous space whose asymptotic
evolution takes place on a strange attractor, i.e. a set whose fractal dimension is in general
not equal to the dimension of the embedding space and whose dynamics shows sensitive
dependence on initial conditions.

More precisely we have in mind the following situation:x is a vector inRD; there is a
transformationf (x) which is defined on a closed setD and bringsD in itself. A trajectory
of this system is a sequencexn such that

xn+1 = f (xn). (1)

According to the Ruelle’s definition [1], an attractor is a setA contained in aD-
dimensional neighbourhoodD which is invariant under the dynamics described by (1). It
must beattracting, i.e. xn stays as close as one wants toA for an initial condition chosen
in D andn large enough, andundecomposable, i.e.A cannot be decomposed into two non-
trivial invariant parts. If the dynamics shows sensitive dependence on initial conditionsA is
called astrange attractor. In general, they have non-trivial fractal dimensions, defined for
instance through the operation of box counting. For generic initial conditions the trajectory
asymptotically stays on the attractorA and the dynamics onA is chaotic, in the sense that
there is a large enough number of positive Lyapunov exponents. The map is expansive
when restricted to the attractor and is contracting in the perpendicular directions, in such
a way that the distance from the attractor decreases very fast with the timen. A precise
mathematical treatment of the problem can be done in the case of Anosov systems [3].

Two of the simplest and best studied examples are the logistic map and the Henon map,
which are defined respectively in one- and two-dimensional space. The mapsf (x) are
respectively given by

xn+1 = 1− ax2
n (2)
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and

xn+1 = 1− ax2
n + yn

yn+1 = bxn.
(3)

This situation is extremely well studied in the literature (see, for example, [2] for a
review). In this note we address a slightly modified problem. We discretize the space
introducing a lattice spaceε. This can be done in several ways. In a one-dimensional
problem, we associate to each integer numberi the real numberX(i) ≡ εi, and to each
real numberx the integer numberi ≡ I (x), whereI (x) can be chosen, for example, as
the integer number which minimizesx −X(i) (in other words,I (x) is the integer which is
nearest tox/ε).

We now define a mapping on integers by the relation

in+1 = I (f (X(in))) ≡ fε(in). (4)

Otherwise stated, we start from an integer, we find the corresponding point in the space,
we apply the mapf to it and we convert the result into an integer again. In this way we
obtain a mapping among integers which, barring pathologies, for sufficiently smallε brings
the integers corresponding to the domainD into themselves.

What happens for smallε? At first we could think that the perturbation that we
introduced is small. However, there are new features which are present only in this case.
A set containing a finite number of elements, O(ε−D), is carried into itself and therefore all
orbits are periodic. Moreover, the strange attractor may break into more than one periodic
orbit. In this case, if there are many periodic orbits, labelled by an indexα, we can define
the periodLα as the length of orbitα and the weightwα as the probability to pick up at
random an initial configuration which ends up on the periodic orbitα. For each value ofε
thew’s and theL’s are computable numbers, which depend onε in a rather complicated
way. We are interested in their statistical properties, in the limitε → 0.

This situation attracted much interest in the literature in the past decade, starting from the
numerical studies by Rannou [4], Levy [5] and Beck and Roepstorf [6]. The problem is not
academic: what we have just described is what happens during a computer simulation of a
deterministic dynamical system, due to the round off introduced by floating point operations.
Indeed real numbers are represented with a finite accuracy, the different operations among
these numbers are done with higher accuracy and the result is rounded at the end. The
question discussed in this paper can be rephrased as a study of the fate of the strange
attractors when rounded arithmetic is used.

Grebogiet al [7] and Beck [8] showed that the typical cycle lengths scale as a power
law of the inverse lattice spacing, the exponent being the so-called ‘correlation dimension’
of the attractor (see below). Two related arguments were given to justify this conclusion.
Both are based on the analogy with a dynamical system where the dynamic rules, which are
obeyed deterministically, are chosen at random at the beginning and kept fixed: the random
map model [9, 10]. In section 2 we will summarize the definition and the main properties
of the random map model and of the disordered dynamical systems that generalize it. In
section 3, which is the central one, we will deal with the relationship between discretized
maps and disordered dynamical systems. The probabilistic scheme that we introduced in
[11] for the study of the dynamics of genetic regulatory systems, based on the closing
probabilities, will play the role of a bridge between the two kinds of models. This scheme
allows us to compute directly the distribution of the weights of attraction basins, which turns
out to be the same as in the case of the random map model [10]. Numerical simulations of
the two maps illustrated above confirm this conclusion, when parameter values are chosen
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so that the dynamics is chaotic, and show a different behaviour at the transition between
chaotic and regular motion. They are presented in section 4. They also throw some light
on the analogy between discretized maps and disordered dynamical systems.

Let us come back to this analogy. This is related to an issue in which we are very
interested: the problem of the relationship between systems which have a fixed evolution
law (in short, deterministic systems) and systems in which the evolution laws (e.g. the
Hamiltonian) are random (random systems), whose best-studied examples are spin glasses
[12]. In this case the words deterministic and random do not refer to the nature of the
equations of motion†, but to the choice of these equations.

A typical example is the problem of the distribution of the energy levels in a quantum
Hamiltonian system which is chaotic at the classical level. It is widely believed, and serious
progress in this direction has been recently made, that the distribution of the levels is the
same as in the random matrix theory, in the limit in which the sizeN of the matrix goes to
infinity [13].

A similar issue is the relation between some models of statistical mechanics without
disorder (e.g. minimum autocorrelation sequences) and the properties of spin-glass-like
systems where the Hamiltonian is chosen at random [14].

In the same spirit an open and crucial issue is whether real glasses (which have a given
Hamiltonian, e.g. a Lennard-Jones potential) are in the same universality class (as far as the
glassy transition is concerned) of disordered systems in which the Hamiltonian is chosen at
random [15].

The investigation of the relationship between the discretization of a continuous map and
a random map gives information on another side of this problem.

2. On disordered dynamical systems

The random map is one of the best known examples of disordered dynamical systems. Its
phase space is constituted by a finite set of points with no underlying metric structure:
� = {1, . . . ,M}. On this space the dynamics is deterministic, but dynamic rules are chosen
at random at the beginning in the following way: we define a mapfη of � into itself (the
subscriptη labels the realization of the dynamic rules) by extracting at random for each
point i its successor,fη(i). Successors of different points are independent random variables.
When they have all been extracted, the dynamic rules

in+1 = fη(in) (5)

are followed deterministically. In this way, we deal with the ensemble of all theMM maps
that can be built withM points, and we are interested in their statistical behaviour in the
large-M limit.

With the usual definition of the RM, all points of phase space have the same probability,
1/M, of being extracted as successors of a given point. This definition is generalized easily
by letting the probabilitypj that j is extracted be non-uniform, but again independent on
the starting pointi: see, e.g. [8].

A more interesting generalization consists in considering correlated dynamical rules,
i.e. fη(i) and fη(j) are correlated random variables, and may depend in principle on the
starting pointsi and j . We will call such systems where the dynamics is deterministic
but dynamical rules are extracted at random and kept fixed during the evolutiondisordered
dynamical systems. Outstanding examples are met in biological modelling: for instance, the

† In the case of a map or of a Hamiltonian system, these are always deterministic.
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random boolean networks proposed by Kauffman as a model of genetic regulatory systems
[16, 11], or attractors neural networks [17].

In [11] we defined a general scheme to study the statistical properties of the attractors
in disordered dynamical systems, based on the so-called closing probabilitiesπM(t, t

′):
they represent the conditional probabilities that a trajectory chosen at random in a random
realization of the dynamics visits the same configuration at timest and t ′, given that no
configuration was repeated before the closing timet ′. This means that the trajectory, after
a transient timet , has entered a periodic orbit of lengthl = t ′ − t . In terms of the closing
probabilities, the probability to find such a trajectory is easily computed. We have to
compute the probabilityFM(t) that the trajectory was not closed before timet ′ = t + l.
This obviously follows the equationFM(t + 1) = FM(t)(1 −

∑t−1
t ′=0πM(t

′, t)), whence,
introducing a continuous time variable, it follows that

FM(t) = exp

(
−
∫ t

0
dt ′

∫ t ′

0
dt ′′πM(t ′, t ′′)

)
. (6)

(To have a slightly simpler formula, we are supposing that the typical closing times are long.
This is verified under the hypothesis that we will discuss in this paper, since the time-scale
grows as a power law ofM.) Thus we can express in terms of closing probabilities the
probability to find a trajectory which, after a transient timet , ends up on a cycle of length
l:

P {T = t, L = l} = πM(t, t + l) exp

(
−
∫ t

0
dt ′

∫ t ′

0
dt ′′ πM(t ′, t ′′)

)
. (7)

If, as it is the case for the RM, the closing probabilities converge asymptotically to a
valueπ∗M independent of botht and t ′, the above formula can be put into the form

P {T = t, L = l} = 1

τ 2
M

exp

(
− (t + l)

2

2τ 2
M

)
(8)

whereτM = π∗M−1/2 is the typical time-scale of the problem, in the sense that the random
variablest/τ and l/τ have a well-defined density of probability even in the limit whereτ
goes to infinity.

All the dependence on system size is thus contained in the factorπ∗M , which is expected
to decrease as a power law ofM under the hypothesis that we will discuss below. For a
uniform RM it holdsπ∗M = 1/M, and consequently the typical time-scale of the dynamical
systems grows as

√
M, while for a non-uniform RM the following holds:

π∗M =
M∑
i=1

p2
i (9)

and the typical time-scale is in general shorter than in the uniform case (the result for the
non-uniform RM was obtained in [7] and in [8]).

Once this probability is known, it is possible to obtain the average number of attractors
existing in a given realization of the dynamical rules: the average number of attractors of
length l is obviously given by

na(l) = M

l
P {L = l, T = 0}. (10)

Now we cannot use formula (8), since the closing probability has not yet reached its
asymptotic value forT = 0. Instead, we have to calculate the closing probabilityπM(0, l).
In the cases where we performed an approximate computation of this quantity [11, 19],
we saw that, under the same hypothesis which implies an asymptotic value of the closing
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probability, it holds thatπM(0, l) ≈ 1/M for large enoughl, just as in a uniform random
map. Logarithmic corrections to this behaviour can be found, for instance in the ‘critical’
case whereπ∗M decreases only logarithmically with system size. Ignoring this possibility,
we find, for long cycles,

na(l) ≈ 1

l
exp

(
− l2

2τ 2
M

)
(11)

and, summing overl, we get for the leading term inM∑
l

nα(l) ≈ logτM (12)

so that, for a uniform RM, the average number of cycles is proportional to the logarithm of
the number of configurations.

The other quantity which characterizes the statistical properties of the attractors is the
distribution of attraction basin weights. This was analytically computed by Derrida and
Flyvbjerg for the case of the uniform RM [10]. The computation need not to be modified
for the case of a generic disordered dynamical system where the closing probabilities have
a constant asymptotic value, and does not depend on the value ofπ∗ (thus it is also
independent of system size), in the large-size limit. For the sake of completeness, let us
report briefly the main steps in the calculation of [10], starting from the definition of the
attraction basin weights.

Let α be the label of the periodic orbit0α; then the weightwα denotes the probability
that a trajectory starting form a random configuration ultimately reaches0α. The weights
satisfy the normalization condition:∑

α

wα = 1. (13)

Following [10], it is convenient to consider the ‘moments’ of the weight distribution
Yp, defined as

Yp =
∑
α

w
p
α (14)

where the overline denotes an average over the realizations of the dynamical rules.
These quantities may be computed if one notes thatYp represents the probability thatp

randomly chosen initial conditions end up on the same periodic orbit. For example, let us
computeY2 [10]: we extract two trajectories, and we compute the probability that the first
one touchest1 = xτ different configurations before closing and that the second one touches
t2 = yτ different configurations before closing on one of thet1 configurations of the second
trajectory. We assume that the closing probability of the second trajectory on the first one
is equal to the closing probability of a trajectory on itself. In the large-τ limit and if τ is
much larger than the time needed forπ(t, t ′) to attain its stationary value, we obtain for the
above probabilityx2/τ 2 exp(−(x + y)2/2). Thus, summing overt1 and t2, we finally get

Y2 =
∫ ∞

0
dx

∫ ∞
0

dy exp

(
− (x + y)

2

2

)
= 2

3
. (15)

We stress that this formula does not depend on the value ofτ , thus it does not depend on
the particular kind of generalized random map considered, provided the closing probability
has a stationary value [11].

It is possible to generalize this procedure to get the genericYp:

YP = 4P−1[(P − 1)!] 2

(2P − 1)!
(16)
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(note that these are independent ofτ ).
This relation can be inverted to obtain the density of the number of weights: the

functionf (w) (not to be confused with a map!), whose meaning is thatf (w) dw represents
the average number of attractors of weight comprised betweenw andw+dw. The following
holds [10]:

f (w) = 1
2w
−1(1− w)−1/2. (17)

The integral
∫

dw f (w), if finite, would be the average value of the total number of
periodic attractors. Its logarithmic divergence is a hint that the total number of periodic
attractors diverges as ln(M) whenM →∞.

This distribution of thew’s is very similar to the one found in spin glasses, wherewα
is defined as the weight of the pure thermodynamical stateα in the Boltzmann state. There
is a simple relation between the two distributions, which can be found in [18].

Not only can the average value of thew’s be computed, but also the fluctuations from
system to system can be predicted. For example we can define for each system the quantity

Y ≡ Y2 =
∑
α

(wα)
2 (18)

whose average value is23.
A detailed computation shows that

Y 2− Y 2 = 52
105− 4

9 = 0.0508 (19)

so thatY fluctuates from sample to sample also in the infinite-size limit.
These are the predictions for the generalized RM which we will compare with the

behaviour of the discretized maps.

3. Discretized maps as disordered dynamical systems

We now consider the dynamical behaviour of a discretized chaotic map. If the domainD
which is mapped into itself has a volumeV , the mappingfε acts on a discrete space of
V ε−D points,D being the dimension of the space.

It is quite clear that the mapfε is very far from a RM. In a RM there is nothing like
the concept of smoothness. Here if two pointsi andj are near in physical space (of course
their distance cannot be smaller thanε) the pointsfε(i) andfε(j) will also be correlated.
On the contrary, in the RM there will be no correlation whatsoever.

But, as we saw in the previous section, the statistical properties of RM’s do not
require the strong condition that the successors of different points are independent random
variables: it is enough that the closing probabilities become stationary after some time. A
condition under which this happens is that the successors of two near configurations become
uncorrelated after a sufficiently large number of iterations. This is just what happens in
chaotic systems.

Two related heuristic arguments were given in the literature to justify the analogy
between discretized chaotic systems and RM [7, 8]; we will now review them, reformulating
them in the language of the closing probabilities.

Let us consider the mapf lε , i.e. thelth iterate of the mapfε . We will argue that this
map is essentially a RM on the strange attractor, or better, on the integers which correspond
to the points nearest the attractor.

The argument runs as follows:
• We first assume that, as far as the properties of the attractors are concerned, the map

f lε has the same properties as the mapI (f l(X(i))) obtained from the discretization of the
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lth iterate of the exact map. The two integersf lε (i) andI (f l(X(i))) will not be equal and
not even near for largel, but all we need is that the closing probabilities are the same in
the two cases.
• We now takel = lε large enough so that two random points initially at a distance

of orderε are completely uncorrelated afterlε iterations. To this purpose, it is enough that
lε is of order 1/λ logε, whereλ is the largest positive Ljapunov exponent. After such a
number of iterations two points initially at a distance of orderε will be at a distance of
order 1, and the discretization will bring them in completely different boxes. Thus we can
argue that the mapI (f l(X(i))) is essentially a random map, in the sense that successors of
different points are not correlated. Moreover, ifK is large enough the continuous dynamics
takes place essentially on the strange attractor.
• The mapsfε and f Kε have the same attractors with the same period, apart from

a possible factor not greater thanK = O(ln(ε)). Since we are interested in the power
behaviour as a function ofε, a factor proportional to lnε is irrelevant.

Let us translate this discussion into the language of closing probabilities. We can define
for the continuous map quantities which are equivalent to the closing probabilities of the
discretized map. More precisely, let us callpε(t, t+ l) the probability that two points of the
same continuous trajectory are at time stepst and t + l in the same box of sizeε. Assume
that the dynamics is mixing. Then, ift and l are large enough,pε(t, t + l) tends to the
asymptotic value

π∗ε =
∑
i

(µi)
2 (20)

whereµi is the invariant measure of the boxi. The first hypothesis of the above argument
is indeed equivalent to the condition that the closing probabilitiesπε(t, t + l) and the
functionspε(t, t + l) are equal. Thus in the above hypothesis the closing probabilities of
the discrete system reach an asymptotic value independent on bothl andt , and the properties
of generalized random maps hold for it.

This computation does not hold fort = 0, since the box where the initial configuration
is has to be chosen with uniform probability. In this case thus it holds thatpM(0, l) = 1/M,
and, following the lines of the computation of the previous section, we find that the number
of cycles increases as the logarithm of the time-scaleτε , whereτε = (π∗)−1/2.

How is this time-scale related to the discretization constantε? If the attractor is fractal,
it holds, asymptotically forε → 0,

∑
i (µi)

2 ∝ εD2, whereD2 is called the correlation
dimension† [22]. Thus the time-scale of the attractors of the disordered dynamical system

† The fractal dimensions of a setD, equipped with a measure dµ(x), can be defined in the following way. We
divide the space in boxes of sizeε and we callµi the integral of the measure of theith box. Asymptotically in
ε → 0 it holds that∑

i

(µi)
s ∝ εDs (21)

where the exponentsDs are called generalized Renyi dimensions [20].
It is evident thatD1 = 0. The total number of boxes which intersect the set diverges asεD0, with negativeD0,

where−D0 is the box-counting dimension. In contrast, the probability of finding two random points in the same
box goes to zero asεD2. D2 is called the correlation dimension.

If

Ds = (s − 1)DH (22)

the fractal is homogeneous andDH is its fractal dimension. In contrast, ifDs is not linear ins the set is said to
be multi-fractal [21] and the relations among different dimensions are not trivial.
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is related to the fractal dimension of the strange attractor through the equation [7, 8]:

τε ∝ ε−D2/2. (23)

On the other hand, the statistical properties of the attraction basins do not depend on
the structure of the fractal attractor, as was pointed out in the previous section.

There is another point that we should mention in order to identify a discretized chaotic
map with a disordered dynamical system. In the latter, dynamical rules are extracted
at random, while the discretization prescription that we gave is deterministic. But this
discrepancy is only apparent. For a given lattice spacingε we can choose virtually
infinite discretization prescriptions, thus generating different realizations of the discretized
dynamical rules with a fixed system size. Two systems with very similar discretization will
behave in a very similar way on the small time-scales, but, as the dynamics is chaotic,
their evolutions will become uncorrelated on large enough time-scales. In this way we can
generate an ensemble of discrete dynamical systems with identical phase space.

In this perspective, the question arises of how the structure of attraction basins change
when we change slightly the dynamical rules, either changing the discretization protocol or
changingε by a small amount. We will see in section 4 that in this last case numerical
simulations suggest the existence of a kind of correlation length for system size: the average
basin size appears to change little for a small change ofN = ε−1, but when the change of
N is large enough we see a new value of〈Y 〉 not more correlated to the previous one.

4. Numerical experiments

4.1. The Henon map

To test the above arguments we simulated the discretized Henon map equation (3) with the
standard parametersa = 1.4 andb = 0.3, for which the dynamics is known to be chaotic. In
these numerical experiments all the intermediate computations are done in double precision,
but this should not change the results, as long as the boxes are much larger than the rounding
error.

In figure 1 we show the average cycle length as a function ofε−1 in the range from
2.5× 104 to 2.0× 106, starting from the point(1, 0). The plot can be fitted to a power
of ε with exponent 0.62, which coincides within the error with the valueD2/2 = 0.61
found in the literature [24]. Also in the same figure, represented as a star, is the result of
a single run where the discretization was not imposed in the algorithm but came from the
round-off errors in single precision operations (ε ' 2−24, cycle length 55′574). We made
the same for double precision operations (ε ' 2−48), finding a cycle of length 5.12× 109

(not represented). Both points agree with the above power law, indicating that there is no
difference between discretization and round-off errors generated in the computer.

In figure 2 we show the moments of the distribution of the weights of the attraction basins
as function ofε−1. Their asymptotic values are in good agreement with the corresponding
values in the random map model, as predicted above.

4.2. The logistic map

To investigate what happens in a transition from ordered to chaotic behaviour we simulated
the logistic map (2).

In the parameter range where the system is chaotic the predictions of the previous
sections seem to be asymptotically verified (but for the values ofε that we simulated



Attraction basins in discretized maps 3765

Figure 1. Log–log plot of the average period as a function ofε for the Henon map with
parametersa = 1.4 andb = 0.3 (chaotic regime). The best fit exponent, 0.62, coincides up
to statistical errors with half of the correlation dimension. The star is the length of the period
detected in a single run of the system, using single-precision arithmetic.

Figure 2. Moments of the weights distribution for the discretized Henon map (parameters:
a = 1.4, b = 0.3) as a function ofε−1. The broken lines represent the analytical predictions
for the random map.

the corrections are still important). The results for the first moments of attraction basins
distribution are showed in figure 3. Figure 3(a) shows the behaviour of〈Y2〉 as a function
of the lattice spacingε. The broken line represents the random map value. Every point
is an average over many slightly different values ofε, but the discretization procedure is
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Figure 3. (a) Average weight of the attraction basins for the discretized logistic map in the
chaotic regime (a = 2), as a function ofε−1 (represented in logarithmic scale). The broken line
represents the random map value. (b) Log–log plot of the difference between the moments of
the attraction basins weight distribution and the analogous random map values. The dotted lines
fit the decay with a power law.

always the same. One can notice that there are important correlations between systems
with slightly different values ofε: when we changeN = ε−1 by a small amount, the
average basin weight changes very little, and only after a large enough change the new
value is almost uncorrelated to the old one. The values of the higher moments are strongly
correlated to〈Y2〉. We plot the difference between them and the random map predictions in
figure 3(b). The corrections to the random map values seem go to zero as a power law of
ε. The best fit coefficients of the power laws are respectively 0.09 for 〈Y2〉, 0.11 for 〈Y3〉
and 0.14 for 〈Y4〉 and 〈(Y2)

2〉. The exponent is roughly equal to 0.2 for all four curves.
Indeed we expect this exponent to be related to the exponent of typical periods, whose
value is in this case 0.5. The convergence to the random map distribution is thus slower
for a one-dimensional system than for a two-dimensional one, like the Henon map. In this
case the numerical data are compatible with our theoretical predictions, but the existence of
strong finite-size effects may introduce systematic effects in our extrapolations

When the control parametera is below a critical threshold, a periodic attractor of length
equal to a power of 2 exists and is stable and the dynamics is not chaotic. In this case there
should be only one attraction basin, corresponding to the periodic orbit of the continuous
system. Nevertheless, finite size effects introduce in the discretized system spurious new
attractors, which are just a copy of the ‘true’ one: consider, for example, the case where an
orbit of period 2 is present (3

4 6 a 6 1.238. . .). Each of the two points that constitute the
real attractor are placed between two points of the discretized system, and in this system
the attractors can be two. Thus the average basin weight is less than 1 for finiteε, and
it goes to 1 as a power law ofε: 1− 〈YP 〉 ≈ CP ε

γP . From our data it appears that the
exponentγP depends very little onP , showing a small tendency to decrease withP (we
cannot say if it is significant: its value is 0.313 forP = 2, 0.308 forP = 3 and 0.303 for
P = 4), while the coefficientCP is a growing function ofP (this is quite natural, since the
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conditionYP = 1 becomes more and more restrictive whenP increases).

Figure 4. (a) Average weight of the attraction basins for the discretized logistic map at the
critical point (a = 1.401 1552), as a function ofε−1 (represented in logarithmic scale). The
broken line represents the random map value. (b) 〈Y3〉, 〈Y4〉 and 〈(Y2)

2〉 versus〈Y2〉 for the
discretized logistic map at the critical point.

At the transition between order and chaos, when the maximum Ljapunov exponent is
still zero but periodic orbits disappear, we expect a non-trivial distribution of attraction basin
weights, with an average weight intermediate between 1 (periodic orbits) and2

3 (random
map). This is what is observed: at the critical pointac = 1.401 1552 the average basin
weight seems to go asymptotically to a value larger than for a random map, though the
correlations in the sampling that we mentioned above make it difficult to extrapolate the
asymptotic value (figure 4(a)). This also holds for the higher moments, which indeed in
our sampling are strongly correlated to〈Y2〉. We plot in figure 4(b) the values of〈Y3〉, 〈Y4〉
and〈Y 2

2 〉 as a function of〈Y2〉. Our noisy data arrange themselves on more regular curves,
which can be fitted to power laws,〈Yp〉 ≈ Cp〈Y2〉γp . The coefficientCp is always equal
to 1 within the errors (as it should be, since, whenY2 is equal to 1, all other moments are
be equal to 1). The best fit exponents are respectivelyγ3 = 1.6, γ4 = 1.9 andγ = 1.7
concerning〈Y 2

2 〉. We notice that, within the error, it holds thatγp = p/2. The average
cycle length also increases in this case as a power law ofε−1, with exponent 0.38 (which
in the case of a chaotic map would correspond to a correlation dimension of the strange
attractor 0.75).

5. Conclusions

In this paper we have shown that the analogy between the cycles induced by the rounding
errors on a chaotic map and the cycles in random maps, proposed some years ago in the
literature [7, 8], can be extended to the distribution of the attraction basin weights. Our
conjecture implies that the latter should be equal to the corresponding distribution found in
the random map model for every map which has a strange attractor. So, for instance, two
simulations of a chaotic map starting from different initial configurations should converge
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to the same limit cycle induced by round-off errors, on the average2
3 of the times. Our

numerical simulations seem to be in agreement with this result, though finite size effects
are large (in particular in the one-dimensional system).

The situation seems to be different at the critical point of parameter space which
separates the chaotic and the periodic region. It would be interesting to understand whether
the distribution of attraction basin weights at the critical point is universal, i.e. it is the same
for all the transitions which belong to the same universality class and are characterized by
the same Feigenbaum exponents. If the answer is positive, it would be interesting also to
set up an analytic computation of the weight distribution in this case.

Another possible development of this work, which in our opinion deserves attention, is
the investigation of the relations between the probability distribution of the distance between
configurations and the fractal dimensions. The closing probability that we introduced here as
our main tool represents in fact the probability that the distance between the configurations
visited at timest and t ′ (on a trajectory not yet closed at timet ′ − 1) is equal to zero.
There is thus a relation between the distribution of the distance atd = 0 in the discretized
system and the correlation dimension. This fact is interesting, since one can hope that the
distribution of the distance can be investigated analytically, as it can be done for instance
in the Kauffman model [23, 11]. The annealed approximation introduced in that context is
somehow equivalent to the hypothesis that the distanced(t, t + l) is a Markovian random
variable, wheret is the time variable. This hypothesis in turn implies, if the hypothesis of
the ergodic theorem of random variables are verified (as it seems plausible for the distance in
a chaotic map), that the distribution of the distance, and the closing probability in particular,
tend to an asymptotic value independent both ont and onl, as was argued in this paper.

The arguments that we presented in this note, although quite reasonable and in agreement
with numerical experiments, have only a heuristic value. It would be very interesting to
find out if rigorous results can be obtained in this direction.
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